SARDRIG

Simplifying Progress

Laboratory Ultrafiltration How to Choose the Optimal Device & Method

Selection Guide for proteins, viruses, DNA, polymers, nanoparticles, exosomes, etc.

1. Consider Sample | Molecular Properties

Molecule shape

linear molecules respond concentrate better with lower g-force

3. Select the Right Molecular Weight Cut Off (MWCO)

■ MWCO should be close to ¹/₃ the target molecular weight • Lower MWCOs may increase recovery, but reduce speed

pH and salt conditions	may cause aggregation and conformational changeslower temperatures reduce concentration ratescan only be done with a 10x molecular weight differencemay affect particle size distribution		
Temperature			
Sample fractionation			
Aggregation and rearrangement properties			
Non-specific binding	test what membrane is best for what macromolecule to avoid unnecessary loss		

• Higher MWCOs have greater surface to molecule interaction area and may bind more

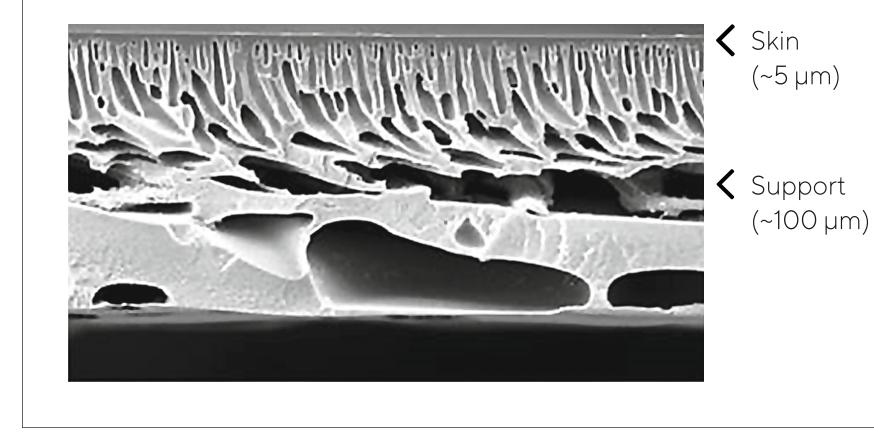
Use reverse centrifugation devices (Vivaspin[®] 2) to maximize recoveries

MWCO	Protein MW	Molecule Size	BPCO (dsDNA)	BPCO (ssDNA)	Estimated Pore Size
1,000 K	>3000 kDa	300 - 600 nm	>5000 bp	>9000 sb	100 nm
300 K	900 - 1800 kDa	90 – 200 nm	>1500 bp	>2900 sb	30 nm
100 K	300 - 900 kDa	30 – 90 nm	>600 bp	>900 sb	10 nm
50 K	150 - 300 kDa	15 – 30 nm	>300 bp	>475 sb	7 nm
30 K	90 – 180 kDa	9 – 15 nm	>50 bp	>275 sb	4 nm
10 K	30 - 90 kDa	5 – 9 nm	>30 bp	>90 sb	2.5 nm
5 K	15 – 30 kDa	3 – 5 nm	>20 bp	>50 sb	1.5 nm
3 K	10 – 20 kDa	2.5 – 3.6 nm	>15 bp	>30 sb	1.2 nm
2 K	3 – 10 kDa	2 – 3 nm	>10 bp	>10 sb	1nm

4. Select the Right Device Treatment Method

• For low starting concentrations pretreat devices with blocking solution to negate non specific absorption

- Pre-rinsing can remove analytes, such as glycerin, that are used to increase membrane stability, but devices must be used immediately after pre-use
- Devices are listed as single use and performance may drop if re-used


5. Select the Right Sample Control Method

- Buffer exchange in parallel to concentration with diafiltration caps and reservoirs
- Recover maximum concentrate with angular dead stop devices and the correct pipette tips
- Control your final sample volumes by prefilling the filtrate vessel
- For sensitive protein targets try using pressurization based devices, keeping a constant pressure ensures

Ultrafilter cross section SEM Showing the membrane skin and separate membrane support

Membrane Options:

- 1. Cellulose Triacetate
- 2. Polyethersulfone
- 3. Regenerated Cellulose
- 4. Hydrosart[®]

2. Select the Right Device

Centrisart[®] 0.1 – 2.5 ml Higher binding, good for cleaner filtrates

Vivaspin[®] 500, 6, 20 0.1 – 20 ml High membrane surface areas, simultaneous buffer exchange with VS 20, good for core applications

Vivaspin[®] 2 0.4 – 2 ml Reverse spin enabled, good for low concentrations

Vivaspin[®] Turbo 2 – 15 ml Fastest spin times, dead stops, good for recovery

Vivacon®

Vivacell 100 20 – 100 ml Centrifuge or pressure based, good for mid range volumes

a stable flux rate and reduces shear stress on the target

• Flushing through with 70% ethanol will "clean" the devices and will minimise sample contamination • Vivaspin[®] devices can be sterilized using ETO gas serialization methods, to further ensure no contamination

Did You Know?

• Sartorius offer FOC samples for testing, to ensure you're always using the optimal device

- Sartorius offers diafiltration caps with the Vivaspin[®] 20 devices
- If using for In Vitro Diagnostics, you must use IVD certified devices
- Vivaspin[®] Angular Deadstop Capture every last microliter

Vivaflow[®] 100 – 5000 ml Plug and play crossflow | TFF, good for quick, simple, concentration at high volumes

0.1 - 2 ml PCR grade available, good for dilute samples and DNA targets

Find it at **fishersci.eu**

