

The Science of Protection

KIMTECH SCIENCE* Nitrile Gloves

KIMTECH SCIENCE* Gloves

Protecting the scientists and the science

CE 0120

- PPE category III, EC directive 89/686/EEC
- Tested in accordance with EN420:2003
- EN374-1:2003 Protection against chemical splash (results on www.contaminomics.com)
- EN374-2:2003 Protection against penetration from micro-organisms
- ISO16604:2004 Protection against penetration from viruses (Phi-X, Herpes, HIV)

KIMTECH SCIENCE* PURPLE NITRILE* Gloves

Unrivalled protection, cleanliness and quality¹ makes KIMTECH SCIENCE* PURPLE NITRILE* Gloves our number one choice for higher risk applications.

- Designed for life sciences, biomedical research, forensic science, R&D and non-sterile drug manufacturing
- AQL 0.65 offers the highest level for EN374-2:2003 protection against penetration by micro-organisms
- Protection against a wide range of chemicals including cytotoxic drugs²

KIMTECH SCIENCE* STERLING* Nitrile Gloves

New technology gives high protection of nitrile with superior strength and comfort¹. KIMTECH SCIENCE* STERLING* Nitrile Gloves provide all-round care for science and the environment.

• Protection against a wide range of chemicals including cytotoxic drugs²

KIMTECH SCIENCE* GREEN NITRILE Gloves

- 80% stronger and 30% leaner than latex³ with better protection on most chemicals
- Excellent tactile sensitivity for handling delicate instruments

Great value nitrile gloves with added strength, less bulk and the fit and feel of latex. KIMTECH SCIENCE* GREEN NITRILE Gloves are durable, comfortable and sustainable.

- 40% stronger and 60% leaner than latex³
- 250 gloves per standard sized box reduces waste, space and environmental impact
- Excellent tactile sensitivity for handling delicate instruments

¹ For KIMTECH SCIENCE* gloves

- ² per ASTM 6978-05
- ³ vs. KIMTECH SCIENCE* PFE* Latex gloves

KIMTECH SCIENCE* Gloves unique production process significantly reduces particle and residue levels, lowering the risk of contamination – protecting the process and the science.

- Powder free lot testing using ISO 21171
- Regular IEST-RP-CC005 testing to measure levels of particles and non-volatile residues
- Non detectable levels of silicone, amide and phthalate (DOP)
- Non-Detectable levels of chemical accelerators: No Thiurams or Thoizoles
- Food contact approved

KIMTECH SCIENCE* Gloves

All-round protection for scientific applications

Applications								
Molecular Biology Biochemistry Chemi	stry Analytical Chemistry	Virology	ology Genomics Pro		Proteomics Forei Scie		Non-Sterile Pharmaceutical Production	
Main techniques	Primary Risk		Secondary Risk			Primary / Alter	native Choice	
Electrophoresis	Chemicals		Contamination					
Polymerized chain reaction	Contamination		Biohazard					
DNA extraction	Chemicals		Biohazard		4		-11/6	
Chemical Synthesis & Derivatization	Chemicals		Contamination					
Pathology	Biohazard		Contamination		•			
Toxicology	Chemicals		Biohazard					
Cell Culture	Sensitive Instruments		Contamination					
Microscopy	Sensitive Instruments		Contamination		1	THE P		
Spectroscopy	Sensitive Instruments		Contamination		F	4		
Chromatography	Chemicals	S	ensitive Instrumer	nts				

EN374-	EN374-	AQL	Virus	Material	Protection		gainst Risks		Description		Glove
1:2003	2:2003	2003 Protection Biohazard Chemical Contaminants Con		Code		Ĭ	Length				
	EN374-2:2003	0.65	ISO 16604: 2004 Proc. B			1		97610-97614	KIMTECH SCIENCE* PURPLE NITRILE-XTRA* Gloves	XS-XL	30cm
	LEVEL 3	0.65	ISO 16604: 2004 Proc. B		Virus			90625-90629	KIMTECH SCIENCE* PURPLE NITRILE* Gloves	XS-XL	24-25cm
EN374-1:2003	1.5	1.5	ISO 16604: 2004 Proc. B	Nitrile				98341-98345	KIMTECH SCIENCE* STERLING NITRILE-XTRA* Gloves	XS-XL	30cm
	1.5	ISO 16604: 2004 Proc. B		Bacter			99210-99214	KIMTECH SCIENCE* STERLING* Gloves	XS-XL	24-25cm	
	EN374-22003	1.5	ISO 16604: 2004 Proc. B		a a	1		99850-99854	KIMTECH SCIENCE* GREEN Nitrile Gloves	XS-XL	24-25cm
		1.5	ISO 16604: 2004 Proc. B		Fungi			50501-50504	KIMTECH SCIENCE* PFE-XTRA* Gloves	XS-XL	30cm
LEVEL 2	1.5	ISO 16604: 2004 Proc. B	Latex				E110-E550	KIMTECH SCIENCE* PFE* Gloves	XS-XL	24-25cm	
		1.5	ISO 16604: 2004 Proc. B			"		SP2110-SP2550	KIMTECH SCIENCE* SATIN PLUS* Gloves	XS-XL	24-25cm

¹ Biohazard protection, EN374-2:2003 air and liquid leak test using ISO2859 sampling to determine Acceptable Quality Limit (AQL)

³ Contaminants: IEST-RP-CC005 test method to measure level of particles, non-volatile residue and extractable ions, conducted periodically by internal product testing laboratory.

Visit www.contaminomics.com for

- Technical data sheets, declarations of conformity
- Full list of EN374-3:2003 chemical permeation test results for all gloves
- Regulatory information, importance of certified protective equipment vs. medical device gloves
- GreenMeter measuring reduction is waste, space, cost and environmental impact

² Limited chemical splash protection EN374-3:2003 chemical permeation test results for individual chemicals available on www.contaminomics.com

KIMTECH SCIENCE* Gloves chemical permeation test results - EN374-3:2003

	EN374-3:2003 Permeation breakthrough times						
Class	0	1	2	3	4	5	6
Time	<10	10-30	30-60	60-120	120-240	240-480	>480
Usage	Not recommended	Splash protection		Medium protection		High protection	

Chemicals	CAS number	Туре	Scientific applications	REACH Symbol
Acetic acid, concentration 10%	64-19-7	Organic acid	Chemical synthesis	(a)
Acetone, concentration 99.8%	67-64-1	Ketone	Solvent for laboratory cleaning, Jones oxidation, SN2 reactions	⋄ (!)
Acetonitrile, concentration 99.9%	75-05-08	Nitrile	Chemical synthesis, liquid chromotography, DNA analysis	(b) (!)
Acrylamide, concentration 40%	79-06-1	Amide	Electrophoresis, DNA analysis	\$
1-Butanol, concentration 99%	71-36-3	Alcohol	Chemical extraction, liquid chromotography	<u>(1)</u>
Citric acid (monohydrate), concentration 30%	77-92-9	Organic acid	Passivate high-purity process piping in biotech and pharma industry	<u>(1)</u>
Cyclohexane, concentration 99.7%	110-82-7	Solvent	Solvent, analysis, calibration of differential scanning calorimetry	(!) (i) (ii) (iii)
Dichloromethane, concentration 99%	75-09-2	Chloro- Hydrocarbon	Solvent for organic compounds, plastic welding adhesive	&
Diethylether, concentration 99.9%	60-29-7	Ether	Solvent, liquid-liquid extraction	(b) (!)
Dimethyl Sulphoxide, concentration 99%	67-68-5	Solvent	Polymerised chain reaction, organic synthesis, extractant in biochemistry	Not hazardous according to Directive 67/548/EC
Ethanol, concentration 70%	64-17-5	Alcohol	General purpose solvent	&
Ethanol, concentration 98%	64-17-5	Alcohol	General purpose solvent	&
Ethidium bromide, concentration 1%	1239-45-8	Intercalating agent	Flourescent tag for electrophoresis	>
Formaldehyde, concentration 37%	50-00-0	Aldehyde	Chemical synthesis	
Glutaraldehyde, concentration 50%	111-30-8	Aldehyde	Biochemical synthesis, creation of toxoid vaccines	£
Hydrochloric acid, concentration 30%	7647-01-0	Inorganic acid	Chemical synthesis, pH regulation, ion exchange	<u>(1)</u>
Hydrochloric acid, concentration 37%	7647-01-0	Inorganic acid	Chemical synthesis, pH regulation, ion exchange	<u>(1)</u>
Hydroflouric acid, concentration 40%	7664-39-3	Inorganic acid	Remove oxide impurities from steel, silicon wafers. Chemical synthesis	
Hydrogen peroxide, concentration 30%	7722-84-1	Oxidizing agent	Disinfectant, antiseptic, oxidizer	(!) (७) (Φ)
Isopropanol, concentration 70%	67-63-0	Alcohol	Solvent, Disinfectant, Cleaning electronic devices	⋄ (!>
Isopropanol, concentration 99.5%	67-63-0	Alcohol	Solvent, disinfectant, cleaning electronic devices	(3) (1)
Methanol, concentration 99%	67-56-1	Alcohol	Solvent, electrophoresis	& & &
Nitric Acid, concentration 50%	7697-37-2	Inorganic acid	Chemical synthesis, strong oxidizing agent	
Nitric Acid, concentration 70%	7697-37-2	Inorganic acid	Chemical synthesis, strong oxidizing agent	
Sodium hydroxide, concentration 40%	1310-73-2	Base	pH regulation, organic synthesis	
Sodium hydroxide, concentration 50%	1310-73-2	Base	pH regulation, organic synthesis	
Sulphuric acid, concentration 50%	7664-93-9	Inorganic acid	Dehydrating agent, many industrial applications	(2)
Sulphuric acid, concentration 95%	7664-93-9	Inorganic acid	Dehydrating agent, many industrial applications	(1)
Toluene, concentration 99.9%	108-88-3	Aromatic hydrocarbon	Solvent, fullerene indicator, carbon nanotubes, hemoglobin extraction	♦
Xylene, concentration 99%	1330-20-7	Aromatic hydrocarbon	Solvent, cleaning agent for steel and for silicon wafers and chips, dry ice baths	(b) (!)

Breakthrough time (minutes)						
GREEN NITRILE	STERLING* Nitrile	PURPLE NITRILE*				
>480	>480	>480				
<2		<2				
	<2	<2				
>480	>480	>480				
8	32	50				
	>480	>480				
		>480				
		<2				
	<2					
		32				
16	33	42				
6		20				
	>480	>480				
>480	>480	>480				
	>480	>480				
210	413	>480				
	88	173				
	6	15				
	>480	>480				
	>480	>480				
11	50	54				
<2	5	7				
11	13	60				
<2	<2	9				
>480	>480	>480				
>480	>480	>480				
	>480	>480				
<2	10	15				
<2	<2	<2				
<2	<2	<2				

Data given are based on results of tests performed in accordance with EN374-32003, by an independent laboratory. These tests may not adequately replicate any specific condition of use. Kimberly-Clark has no detailed knowledge or control over the conditions of end use., therefore data must be for advisory purposes only, and Kimberly-Clark must decline any liability.

Visit www.contaminomics.com for full set of test results